Skip to contents

Modeling

Fit a generalized additive latent and mixed model.

galamm()
Fit a generalized additive latent and mixed model
sl()
Set up smooth term with factor loading
t2l()
Set up smooth term with factor loading
galamm-package
galamm: Generalized Additive Latent and Mixed Models

High-level model output

Functions for summarising the result of model fits.

anova(<galamm>)
Compare likelihoods of galamm objects
plot(<galamm>)
Diagnostic plots for galamm objects
plot_smooth(<galamm>)
Plot smooth terms for galamm fits
print(<galamm>)
Print method for GALAMM fits
print(<summary.galamm>)
Print method for summary GALAMM fits
summary(<galamm>)
Summarizing GALAMM fits

Model details

Detailed information on specific parts of model fits.

VarCorr(<galamm>)
Extract variance and correlation components from model
coef(<galamm>)
Extract galamm coefficients
confint(<galamm>)
Confidence intervals for model parameters
deviance(<galamm>)
Extract deviance of galamm object
factor_loadings(<galamm>)
Extract factor loadings from galamm object
family(<galamm>)
Extract family or families from fitted galamm
fitted(<galamm>)
Extract model fitted values
fixef(<galamm>)
Extract fixed effects from galamm objects
formula(<galamm>)
Extract formula from fitted galamm object
logLik(<galamm>)
Extract Log-Likelihood of galamm Object
nobs(<galamm>)
Extract the Number of Observations from a galamm Fit
predict(<galamm>)
Predictions from a model at new data values
print(<VarCorr.galamm>)
Print method for variance-covariance objects
ranef(<galamm>)
Extract random effects from galamm object.
residuals(<galamm>)
Residuals of galamm objects
response()
Extract response values
sigma(<galamm>)
Extract square root of dispersion parameter from galamm object
vcov(<galamm>)
Calculate variance-covariance matrix for GALAMM fit

Datasets

Simulated and real example datasets.

cognition
Simulated Data with Measurements of Cognitive Abilities
diet
Diet Data
epilep
Epilepsy Data
hsced
Example Data with Heteroscedastic Residuals
latent_covariates
Simulated Data with Latent and Observed Covariates Interaction
latent_covariates_long
Simulated Longitudinal Data with Latent and Observed Covariates Interaction
lifespan
Simulated Dataset with Lifespan Trajectories of Three Cognitive Domains
mresp
Simulated Mixed Response Data
mresp_hsced
Simulated Mixed Response Data with Heteroscedastic Residuals

Optimization

Functions to aid in optimization.

extract_optim_parameters(<galamm>)
Extract parameters from fitted model for use as initial values
galamm_control()
Control values for galamm fit