Calculate variance-covariance matrix for GALAMM fit
Usage
# S3 method for class 'galamm'
vcov(object, parm = "beta", ...)Arguments
- object
Object of class
galammreturned fromgalamm.- parm
The parameters for which the variance-covariance matrix should be calculated. Character vector with one or more of the elements "theta", "beta", "lambda", and "weights". Can also be an integer vector. When given as a character, it must be in only lowercase letters.
- ...
Further arguments passed on to other methods. Currently not used.
See also
confint.galamm() for the method computing confidence intervals.
See vcov() for the generic function.
Other details of model fit:
VarCorr(),
coef.galamm(),
confint.galamm(),
deviance.galamm(),
factor_loadings.galamm(),
family.galamm(),
fitted.galamm(),
fixef(),
formula.galamm(),
llikAIC(),
logLik.galamm(),
nobs.galamm(),
predict.galamm(),
print.VarCorr.galamm(),
ranef.galamm(),
residuals.galamm(),
response(),
sigma.galamm()
Examples
# Linear mixed model with heteroscedastic residuals
mod <- galamm(
formula = y ~ x + (1 | id),
dispformula = ~ (1 | item),
data = hsced
)
# Extract covariance matrix for fixed regression coefficients
vcov(mod, parm = "beta")
#> [,1] [,2]
#> [1,] 0.009841573 -0.007511908
#> [2,] -0.007511908 0.014715234
# and then for weights, which gives us the variance.
vcov(mod, parm = "weights")
#> [,1]
#> [1,] 0.002459613
