Summary method for class "galamm".
Usage
# S3 method for class 'galamm'
summary(object, ...)
Arguments
- object
An object of class
galamm
returned fromgalamm
.- ...
Further arguments passed on to other methods. Currently not used.
Value
A list of summary statistics of the fitted model of class
summary.galamm
, containing the following elements:
AICtab
a table of model fit measures, returned byllikAIC
.call
the matched call used when fitting the model.fixef
a matrix with fixed effect estimated, returned byfixef
.gam
List containing information about smooth terms in the model. If no smooth terms are contained in the model, then it is a list of length zero.model
a list with various elements related to the model setup and fit. See?galamm
for details.parameters
A list object with model parameters and related information. See?galamm
for details.Lambda
An object containing the estimated factor loadings. Returned fromfactor_loadings.galamm
. If there are no estimated factor loadings, then this object isNULL
.random_effects
a list containing the random effects. See?galamm
for details.VarCorr
An object of classVarCorr.galamm
, returned fromVarCorr.galamm
.weights
An object containing information about estimated variance functions, when there are heteroscedastic residuals. Otherwise the object isNULL
.
See also
print.summary.galamm()
for the print method and summary()
for
the generic.
Other summary functions:
anova.galamm()
,
plot.galamm()
,
plot_smooth.galamm()
,
print.galamm()
,
print.summary.galamm()
Author
Some of the code for producing summary information has been derived
from the summary methods of mgcv
(author: Simon Wood) and
lme4
batesFittingLinearMixedEffects2015galamm
(authors: Douglas M. Bates, Martin Maechler, Ben Bolker, and Steve Walker).
Examples
# Linear mixed model with heteroscedastic residuals
mod <- galamm(
formula = y ~ x + (1 | id),
weights = ~ (1 | item),
data = hsced
)
summary(mod)
#> GALAMM fit by maximum marginal likelihood.
#> Formula: y ~ x + (1 | id)
#> Data: hsced
#> Weights: ~(1 | item)
#>
#> AIC BIC logLik deviance df.resid
#> 4126.3 4151.7 -2058.1 4116.3 1195
#>
#> Scaled residuals:
#> Min 1Q Median 3Q Max
#> -5.6545 -0.7105 0.0286 0.6827 4.3261
#>
#> Random effects:
#> Groups Name Variance Std.Dev.
#> id (Intercept) 0.9880 0.9940
#> Residual 0.9597 0.9796
#> Number of obs: 1200, groups: id, 200
#>
#> Variance function:
#> 1 2
#> 1.000 1.995
#>
#> Fixed effects:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.1289 0.0992 1.299 1.938e-01
#> x 0.7062 0.1213 5.822 5.819e-09
#>
#>